
Twin-edged polyhedra from links and knots. Draft by Stephen Nurse June 2023 

Abstract 

This paper presents ways of making polyhedra based on a cube documented by Marleen Hartogg. 

Models are made using paper cutouts, or basket cane trained over jigs and glued. 18 styles of 

Platonic solids and 13 styles of tessellation are identified.  

Basket cane models of the platonic solids exist in configurations which vary the strand count of the 

model. For example, one style of twin edged tetrahedron has 64 configurations and can be made 

from 1, 2, 3 or 4 strands of cane. 

There is considerable scope for these models to be made and enjoyed in classrooms where doing 

maths can motivate both students and teachers. 

  
Figure 1: Marleen Hartog’s cubic knitted ball (Hartog) 

Figure 2: Equivalent model from paper and staples  

Introduction 

In May 2022, a friend Christine suggested a craft idea for my wife: the project was the braided 

knitted ball by Marleen Hartog (figure 1). Marleen’s pattern included a practice paper version which 

I made (figure 2). Then I wondered: could this form be applied to other polyhedra? If Marleen’s ball 

was a cube, what would a tetrahedron, octahedron, dodecahedron and icosahedron look like? 

 

https://www.ravelry.com/patterns/library/gevlochten-bal---braided-ball
https://www.ravelry.com/patterns/library/gevlochten-bal---braided-ball
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Figure 3: Equivalent of figure 2 from basket cane, electrical heat shrink, glue 

Figure 4: Cube from figure 3 in 3d printed jigs during construction 

Before answering this, a tractable form of the cube was needed, that is a cube with translatable 

geometry. This is shown in figure 3. This basket cane has the topology of figure 2 and traces edges of 

a cube with chamfered edges and truncated vertices. It is a template for similar tetrahedra, 

octahedra, dodecahedra and icosahedra. 

 
Figure 5: Platonic solids chamfered, then truncated: tetrahedron, cube, octahedron, dodecahedron, 

icosahedron. 

As shown in figure 5, the Platonic solids all have versions which are chamfered, then truncated. It 

seems logical that equivalents of figure 3 exist for all of them, ie versions with twin edges, and a 

hoop parallel to each side.  

Tetrahedron and octahedron 

Initial analysis of these forms was on the tetrahedron, and later I considered other shapes. 
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Figure 6: Stereographic projection sketch of tetrahedron from links, with links representing sides. 

Figure 7: Basket cane version of figure 6 held with glue and electrical heat shrink. 

Figure 8: Figure 7 tetrahedron was made with clips and  3d printed jigs. 

The tetrahedron is the Platonic solid with the least number of faces, edges and corners, so seemed 

the easiest to sketch and make. I sketched a tetrahedron in stereographic projection, then used jigs 

to make the interlocking links (Figures 6, 7, 8). 

  
Figure 9: Stereographic projection style sketch of tetrahedron from single strand. 

Figure 10: 3d version of figure 5 from basket cane, glue, electrical heat shrink. 

Later I sketched variations on the plain stereographic projection, and made a configuration of figure 

7 from a single strand. This new shape (Figures 9 and 10) turns the four links into a single knot 

forming a closed loop or Euler circuit. The Euler circuit depends on half twists in edges acting as 

switches, transferring strands between links. 
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Figure 11: Tetrahedron sketches showing configurations of twists in edges. It shows the number of 

links per configuration, and counts the configurations with 4, 3, 2 and 1 link. 

There are six sites for switches in this double-edged tetrahedron, so 26 configurations. Using 

sketches (figure 11), I counted switching in tetrahedra (see figures 6 to 10), finding: 

1   configuration for shapes with 0 or 6 switches, 

6   configurations for shapes with 1 or 5 switches 

15 configurations for shapes with 2 or 4 switches 

20 configurations for shapes with 3 switches. 

These results can be calculated through the combination function C(6, k) where k is the number of 

switches. Harder to predict is the number of links resulting from different switch configurations.  

The links in each configuration were counted. Many were similar once symmetry is considered 

(figure 11). This style of tetrahedron has 64 edge configurations. When 4 links corresponding to 

faces.  

A single strand octahedron is shown in figures 12, 13). Note that vertices become complex when 

more than 3 edges meet at corners. 

https://en.wikipedia.org/wiki/Combination
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Figure 12: Twin edge octahedron from single strand. 

Figure 13: Sketch for figure 12 is based on the stereographic projection of an octahedron. 
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Dodecahedron and Icosahedron 

  
Figure 14: Dodecahedron knot from single basket cane strand. 

Figure 15: Planning diagram for dodecahedron knot.  (Nurse 2023) 

The largest twin edge polyhedron knot made to date is a dodecahedron, made using a central jig and 

node jigs to hold basket cane in place before gluing. Planning was required to determine the cane’s 

path between nodes (Nurse 2023). Figure 15 is based on a dodecahedron net, that is a set of 

pentagons that will fold in to a dodecahedron.  

It is complex mapping dodecahedron edge configurations as per figure 11. Dodecahedrons have 30 

edges, over a billion (230 or 1,073,741,824) edge configurations and up to 12 links. The equivalent 

icosahedron has the same number of edges and configurations but up to 20 sides. An algorithm to 

determine the number of links present in a given edge configuration may be possible. 

I have made twin edge versions of all Platonic solids except the icosahedron. This shape has 5 edges 

meeting at each corner, a setup that is hard to make using current jigs. 
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Polyhedra configurations 

Up till now, only one twin edged Platonic solid corner configuration has been examined. This section 

looks at other corner configurations. 

 
 Figure 16 Twin edge cube with three possible corner styles  

Looking at the figure 5 cube in detail, there are 3 node configurations preserving the twin edge 

arrangement. These are shown in figure 16: a) Edges don’t cross and sides are independent without 

overlap or structure, b) links loop back on themselves and become edges, and c) overlapping links 

with structure as per figure 3. Note that 16c resembles figure 22 in Roelofs (2008), however Roelofs 

describes knots on each vertex of a polyhedron. 

Figure 16 a), b) and c) have 240, 0 and 120 degree anticlockwise deviation angle of strands passing 

through the node. This applies when the node is flat, which occurs in hyperbolic (spherical) 

geometry. 

  
Figure 17: Edge net for cube 16a, with loops corresponding to sides. 

Figure 18: Cube from figure 17 net. 
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Figure 19: Edge net for cube as per 16b. 

Figure 20: Cube from figure 19 net. 

 

 
 

Figure 21: Edge net for cube as per 16c, representing the topology of figures 1, 2 and 3. 

Figure 22: Cube from figure 21 net. 

These styles can be described by paper models. Models are made using 2d drawings with coloured in 

areas representing edges. Drawings are cut, rolled and taped. Figures 17 to 22 represent polyhedron 

styles shown in figure 16.  
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Figure 23: Sides or links are twisted together to form a cube. This is a structural configuration of 

figure 16a. 

Figure 24: Cube from figure 24 in construction jigs. 

A configuration of a figure 16a style cube in shown in figure 24. Full twists along edges provide 

structure. 

 
Figure 25: Styles of twin edged Platonic solids with suggested nomenclature, (P3.2: P = Platonic Solid, 

3 = Third solid, 2 = 2nd anti - clockwise deviation at node)  
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Figure 26: Concave skeletal octahedron (P4.4 in fig 20) 

Figure 27: Skeletal octahedron in progress in jigs 

Figure 28: Concave great dodecahedron (P5.5 in fig 20) 

Styles of twin edge polyhedra from Platonic solids are tabled in figure 25. Styles P1.3, P2.1, P2.2, 

P2.3 have already been discussed. Tetrahedra, cubes and dodecahedra all have 3 faces at corners, 

but octahedra and icosahedra have 4 and 5 respectively. Rinus Roelofs (2008) makes similar 

statements, for example “There are five Platonic solids. Of these, the tetrahedron, the cube and the 

dodecahedron have in common the fact that at each vertex three faces meet.” 

Octahedral and icosahedral twin edge structures are shown in figures 26 to 28. They are unusual and 

include the zero volume skeletal octahedron. This octahedron is topologically the same as P2.3 seen 

in figure 3. 

Weaving Configurations 

As well as the solid polyhedra listed in figure 25, planar polyhedra (tessellations from regular 

hexagons, squares and triangles) can be bases for twin-edged forms.   

 
Figure 29: Styles of twin edged weavings based on tilings with suggested nomenclature, (T3.2: T = 

Tiling Based, 3 = Third tessellation, 2 = 2nd anti-clockwise deviation at nodes) 
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This is shown in figure 29, and examples of the weavings are shown in figures 30 and 31. In these 

representations, the black space is free or open. The diagrams show regular tilings which do not fill 

the plane. 

  
Figure 30: Weaving T1.3, a hexagonal pattern where strands take the third diversion at nodes. 

Figure 31: Weaving T3.6, a triangular and hexagon pattern where strands meeting at a node take the 

last diversion. 

Education and other applications 

There is considerable scope for demonstration and hands-on use of (doing) maths in the models 

shown in this paper. Topics include symmetry, hyperbolic geometry, indices, permutations, topology 

and network theory. The constructions could also be analysed using advanced mathematics, and 

appendix 1 is from an email from Daniel Mathews, a Monash University mathematician. 

Further Work on twin edged polyhedra and weavings 

More polyhedra could be made from basket cane including the remaining icosahedron, Archimedean 

solids, prisms, nanotube models from hexagons, antiprisms and antiprism stacks.   

Mapping and counting links in configurations of double edge polyhedra could continue. One 

tetrahedron style has been mapped sofar. The number of possible configurations in 60 edged 

icosahedra and dodecahedra is large, and some automation or algorithm could be developed to 

predict the number of links in a given configuration.  

The basic tessellation weavings could be modified to make continuous strand weavings capable of 

being stitched by machine. 

Summary 

Fresh work discussed in this research proposal came from curiosity about a friend’s knitting pattern. 

First I made the cubic paper model as suggested in the pattern. Later, its topology was recognised, 

allowing variations to be made. The forms made correspond to the edges of chamfered / truncated 

Platonic solids as shown in figure 5. Altogether 18 styles of twin edge polyhedra and 13 weavings 

have been identified, each with possible configurations.  In some cases, configuration determines 

the number of links in a construction, for example in figures 6 to 10. 

This fresh work could form the basis of curriculums and new maths. It could compliment similar 

work listed in the references (Nurse 2018, 2021, 2022)  
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Dedication 

Dedicated to the memory of my wife Christine, who died in 2022. She made a crocheted cube which 

set the ball rolling. 

Appendix 1  

Email between Steve Nurse and Daniel Mathews, Monash mathematics academic and researcher. 

From Daniel Mathews, 24/6/22  

Hi Stephen, 

I finally got around to reading your blogs. Nice stuff, and nice pictures. One way of looking at what you're 

doing is building links (i.e. knots with more than 1 component) out of polyhedra.  

 

There is a sort of "standard" way in the literature to build links out of polyhedra (or more generally a planar 

graph), but what you're doing seems to be different. 

 

This "standard" construction, I know as the "median construction". What you do is you put two strands with a 

twist (maybe half twist, maybe full twist, depending what you want to do) along each edge.   

I found a nice illustration of this standard idea here (with half twist along each edge) 

http://logical.ai/polyknot/org/celtic.html . I also mention it in this article  

https://www.danielmathews.info/2017/09/08/tutte-meets-homfly/ 

(There's a theorem relating the Tutte polynomial of a graph with the HOMFLY polynomial of the link you get 

from the median construction... skip the algebra stuff if you want... some way down the page I mention the 

median constructions) 

Also, in this paper with Tamas Kalman we also used the construction. It's about contact geometry and Floer 

homology but there are again pictures which illustrate the construction. 

https://www.danielmathews.info/wp-

content/uploads/2021/01/tight_contact_structures_on_seifert_surface_complements_published_version.pdf 

 

But your construction is different from the median construction. I suppose it can be regarded as putting a pair 

of strands along each edge, but then something different "alternating" is happening... I don't think I've seen it 

before, but that's not to say it hasn't been considered before in the mathematical literature. As you 

mentioned, it has certainly been considered in the knitting literature! 

 

Regards, Dan 
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